Lo2(2x-3)+5

Maria laura 1 respuesta
Dominio,rango y tabla de valores procedimiento bien específico
0
{0} / {1} caracteres recomendados
La respuesta debe contener algún carácter
Respuestas
Pablo
Profesor Pro
Buenos días, María Laura. Entiendo que tu función es el logaritmo en base 2 de 2x-3 al que le estamos sumando 5 unidades. Para hallar el dominio, recuerda que el logaritmo de un número existe si y solo si el número es mayor estricto que 0. Por tanto, debes despejar la x de la desigualdad 2x-3>0 y obtendrás que x debe ser mayor ESTRICTO que 3/2. Si x fuera 3/2, 2x-3 valdría 0 y el logaritmo de 0 es menos infinito. Luego el dominio de tu función es (3/2, infinito). Para calcular el rango o recorrido, debes estudiar qué valores toma tu función. El logaritmo tiende a menos infinito cuando 2x-3 tiende a 0 (es decir, cuando x tiende a 3/2), y tiende a más infinito cuando 2x-3 tiende a infinito (es decir, x tiende a infinito). Si sumamos 5 unidades a la función, lo que estamos haciendo es desplazarla hacia arriba en el eje de la Y 5 unidades. Esto último no tiene mucha importancia en este caso pues hemos razonado que el rango de log2(2x-3) es (-infinito,infinito). Entonces, el rango de log2(2x-3)+5 será (-infinito+5,infinito+5), que sigue siendo (-infinito,infinito). Para representar la función, necesitamos una tabla de valores. Recuerda que x>3/2. Los valores más fáciles que se me ocurren son: *Si x=2, entonces y =log2(2·2-3)+5 =0+5=5 *Si x=3, entonces y=log2(2·3-3)+5=log2(3)+5=6.584962 *Si x=4, entonces y=log2(2·4-3)+5=log2(5)+5=7.321928 Solo queda representar los puntos (x,y). Si te has quedado con alguna duda, vuelve a preguntarme y si lo necesitas, nos vemos en una clase. Un saludo.
valoración
El creador de la pregunta ha marcado la pregunta como "ha sido de utilidad"
Escribe una respuesta
0
Maria laura
Miembro desde julio de 2021